
朱盛茂,2011年博士毕业于浙江大学。曾先后在浙江大学、浙江外国语学院任教。现为浙江师范大学“双龙学者”特聘教授。
研究方向为几何拓扑和数学物理。更具体地,我在以下几个方面做过研究。
一、量子拓扑
[1] Qingtao Chen, Kefeng Liu, Pan Peng and Shengmao Zhu, Congruence Skein Relations for Colored HOMFLY-PT Invariants, Commun. Math. Phys. (2022).
[2] Shengmao Zhu, New structures for colored HOMFLY-PT invariants. Sci. China Math. (2022).
[3] Qingtao Chen and Shengmao Zhu, Full colored HOMFLYPT invariants, composite invariants and congruence skein relations, Lett. Math Phys. (2020) 110: 3307-3342.
[4] Shengmao Zhu, A simple proof of the strong integrality for full colored HOMFLYPT invariants, J. Knot Theory Ramifications. 28 (2019), no. 7, 1950046, 16 pp.
[5] Xin Zhou and Shengmao Zhu, A new approach to Lickorish-Millett type formulae, J. Knot Theory Ramifications 26 (2017), no. 13, 1750086, 19 pp.
[6] Shengmao Zhu, Higher order terms in asymptotic expansion of colored Jones polynomials, Pure Appl. Math. Q. 13 (2017), no. 4, 741-762.
[7] Shengmao Zhu, Colored HOMFLY polynomials via skein theory, J. High Energy Phys. (2013) no. 10, 229.
[8] Qingtao Chen, Kefeng Liu and Shengmao Zhu, Volume conjecture for SU(n)-invariants, arXiv:1511.00658.
[9] Qingtao Chen, Kefeng Liu and Shengmao Zhu, Cyclotomic expansions for the colored HOMFLY-PT invariants of double twist knots,arXiv:2110.03616.
二、拓扑弦的数学结构
[1] Shengmao Zhu, Integrality structures in topological strings and quantum 2-functions, J. High Energy Phys. (2022) no. 5, 043.
[2] Shengmao Zhu, On explicit formulae of LMOV invariants, J. High Energy Phys. (2019) no. 10, 076.
[3] Wei Luo and Shengmao Zhu, Integrality of the LMOV invariants for framed unknot, Commun. Number Theory Phys. 13 (2019), no. 1, 81-100.
[4] Shengmao Zhu, Topological strings, quiver varieties, and Rogers-Ramanujan identities, Ramanujan J. 48 (2019), no. 2, 399-421.
[5] Shengmao Zhu, On a proof of the Bouchard-Sulkowski conjecture, Math. Res. Lett. 22 (2015), no. 2, 633-643.
三、Hodge理论和复结构的形变理论
[1] Dingchang Wei and Shengmao Zhu, Two applications of the ddbar-Hodge theory, Chin. Ann. Math. Ser. B, to appear.
[2] Kefeng Liu and Shengmao Zhu, Global methods of solving equations on manifolds, Surveys in Differential Geometry XXIII, (2020), 241-276.
[3] Kefeng Liu and Shengmao Zhu, Solving equations with Hodge theory, arXiv: 1803.01272.
四、曲线模空间的相交理论
[1] Wei Luo and Shengmao Zhu, Hurwitz-Hodge integral identities from the cut-and-join equation, Ann. Comb. 19 (2015), no. 4, 749-763.
[2] Shengmao Zhu, On the recursion formula for double Hurwitz numbers, Proc. Amer. Math. Soc. 140 (2012), 3749-3760.
[3] Shengmao Zhu, Hodge integral recursion from cut-and-join equation of Marino-Vafa formula, Pure Appl. Math. Q. 8 (2012), no. 4, 1147-1177.
[4] Shengmao Zhu, Hodge integrals with one lambda-class, Sci. China Math. 55 (2012), no. 1, 119-130.
[5] Shengmao Zhu, Note on the relations in the tautological ring of Mg, Pacific J. Math. 252 (2011), no. 2, 499-510.
以上几个方面看起来不同,但在超弦理论的对偶性原理下都是相互联系的。弦对偶理论为数学提供了一个宏大的框架,它几乎把纯数学的各个分支都联系在了一起,以上只是冰山一角。我的主要研究动机就是希望去了解弦对偶背后的数学图像。
欢迎对几何、拓扑、代数、数学物理等方向感兴趣的同学报考我的研究生。希望你
1、有一定数学基础。
2、对数学有热情。
3、有决心和毅力从事基础研究。
- 副教授
硕士生导师- 性别:男
- 电子邮箱:
- 入职时间:2022-03-03
- 在职信息:在岗
- 所在单位:数学科学学院
- 学历:博士研究生毕业
- 学位:博士学位
- 毕业院校:浙江大学
- 办公地点:办公室在7幢422房间
- 联系方式:邮箱:szhu@zju.edu.cn 或 shengmaozhu@126.com 微信号:shengmaozhu
- 通讯/办公地址:
- 邮箱:
