Language
MOBILE Version
Personal Information

朱盛茂,2011年博士毕业于浙江大学。曾先后在浙江大学、浙江外国语学院任教。现为浙江师范大学“双龙学者”特聘教授。


研究方向为几何拓扑和数学物理。更具体地,我在以下几个方面做过研究。

一、量子拓扑

[1] Qingtao Chen, Kefeng Liu, Pan Peng and Shengmao Zhu, Congruence Skein Relations for Colored HOMFLY-PT Invariants, Commun. Math. Phys. (2022).

[2] Shengmao Zhu, New structures for colored HOMFLY-PT invariants. Sci. China Math. (2022).

[3]  Qingtao Chen and Shengmao Zhu, Full colored HOMFLYPT invariants, composite invariants and congruence skein relations, Lett. Math Phys. (2020) 110: 3307-3342.

[4]  Shengmao Zhu,  A simple proof of the strong integrality for full colored HOMFLYPT invariants,   J. Knot Theory Ramifications. 28 (2019), no. 7, 1950046, 16 pp.

[5] Xin Zhou and Shengmao Zhu, A new approach to Lickorish-Millett type formulae,  J. Knot Theory Ramifications 26 (2017), no. 13, 1750086, 19 pp.

[6] Shengmao Zhu, Higher order terms in asymptotic expansion of colored Jones polynomials,  Pure Appl. Math. Q. 13 (2017), no. 4, 741-762.

[7] Shengmao Zhu, Colored HOMFLY polynomials via skein theory, J. High Energy Phys. (2013) no. 10, 229.

[8] Qingtao Chen, Kefeng Liu and Shengmao Zhu, Volume conjecture for SU(n)-invariants,  arXiv:1511.00658.

[9] Qingtao Chen, Kefeng Liu and Shengmao Zhu, Cyclotomic expansions for the colored HOMFLY-PT invariants of double twist knots,arXiv:2110.03616.


二、拓扑弦的数学结构

[1] Shengmao Zhu,  Integrality structures in topological strings and quantum 2-functions, J. High Energy Phys. (2022) no. 5, 043.

[2] Shengmao Zhu,  On explicit formulae of LMOV invariants,  J. High Energy Phys. (2019) no. 10, 076.

[3]  Wei Luo and Shengmao Zhu, Integrality of the LMOV invariants for framed unknot,  Commun. Number Theory Phys. 13 (2019), no. 1, 81-100.

[4]  Shengmao Zhu, Topological strings, quiver varieties, and Rogers-Ramanujan identities,  Ramanujan J. 48 (2019), no. 2, 399-421.

[5] Shengmao Zhu, On a proof of the Bouchard-Sulkowski conjecture, Math. Res. Lett. 22 (2015), no. 2, 633-643.


三、Hodge理论和复结构的形变理论

[1] Dingchang Wei and Shengmao Zhu, Two applications of the ddbar-Hodge theory, Chin. Ann. Math. Ser. B, to appear. 

[2]  Kefeng Liu and Shengmao Zhu,  Global methods of solving equations on manifolds, Surveys in Differential Geometry XXIII, (2020), 241-276.

[3]  Kefeng Liu and Shengmao Zhu, Solving equations with Hodge theory, arXiv: 1803.01272.


四、曲线模空间的相交理论

[1]  Wei Luo and Shengmao Zhu, Hurwitz-Hodge integral identities from the cut-and-join equation,  Ann. Comb. 19 (2015), no. 4, 749-763.

[2] Shengmao Zhu, On the recursion formula for double Hurwitz numbers, Proc. Amer. Math. Soc. 140 (2012), 3749-3760.

[3]  Shengmao Zhu, Hodge integral recursion from cut-and-join equation of Marino-Vafa formula,  Pure Appl. Math. Q. 8 (2012), no. 4, 1147-1177.

[4] Shengmao Zhu,  Hodge integrals with one lambda-class, Sci. China Math. 55 (2012), no. 1, 119-130.

[5] Shengmao Zhu,  Note on the relations in the tautological ring of Mg,  Pacific J. Math. 252 (2011), no. 2, 499-510.


以上几个方面看起来不同,但在超弦理论的对偶性原理下都是相互联系的。弦对偶理论为数学提供了一个宏大的框架,它几乎把纯数学的各个分支都联系在了一起,以上只是冰山一角。我的主要研究动机就是希望去了解弦对偶背后的数学图像。


欢迎对几何、拓扑、代数、数学物理等方向感兴趣的同学报考我的研究生。希望你

1、有一定数学基础。

2、对数学有热情。

3、有决心和毅力从事基础研究。








Education Background
    No content
workexperience
    No content
Research Focus
    No content
Social Affiliations
    No content
Research Group
No content
Personal information

associate professor    

Supervisor of Master's Candidates

Gender:Male

E-Mail:

Date of Employment:2022-03-03

Status:在岗

Professional Title:associate professor

School/Department:数学科学学院

Education Level:Graduate student graduate

Degree:Doctorate

Alma Mater:浙江大学

Business Address:办公室在7幢422房间

Contact Information:邮箱:szhu@zju.edu.cn 或 shengmaozhu@126.com 微信号:shengmaozhu

Other Contact Information

PostalAddress:

email:

©2018 Zhejiang Normal University all rights reserved.
Add: 688 Yingbin Road, Jinhua, Zhejiang Province, 321004 ChinaTel: +86 (579) 8228-2380
Fax: +86 (579) 8228-0337
E-mail: wsc@zjnu.cn