![]() |
基本信息Personal Information
副教授
性别 : 男
毕业院校 : 德国帕德博恩大学
学历 : 博士研究生毕业
学位 : 博士学位
在职信息 : 在岗
所在单位 : 数学科学学院
入职时间 : 2017年11月01日
办公地点 : 7幢423
Email :
扫描关注
- [1]Kang, Yingli.A study on parity signed graphs: The rna number.Applied Mathematics and Computation.2022 (431)
- [2]Kang, Yingli.(1,0,0) -colorability of planar graphs without cycles of length 4 or 6.Discrete Mathematics.2022,345
- [3]Ligang Jin.Partially normal 5-edge-colorings of cubic graphs.European Journal of Combinatorics.2021,95
- [4]Ligang Jin.Colouring of generalized signed planar graphs.European Journal of Combinatorics.2020,92
- [5]Ligang Jin.Unions of 1-factors in r-graphs and overfull graphs.Journal of Combinatorics.2020
- [6]Ligang Jin.Remarks on planar edge-chromatic critical graphs.Discrete Applied Math..2016,200 :200-202
- [7]Ligang Jin.Face-degree bounds for planar critical graphs.Electron. J. Combin..2016,23 (3):#P3.21
- [8]Ligang Jin.Choosability in signed planar graphs.European J. Combin..2016,52 :234-243
- [9]Ligang Jin.Petersen cores and the oddness of cubic graphs.J. Graph Theory.2017,84 :109-120
- [10]Ligang Jin.Cores, joins and the Fano-Flow conjectures.Discuss. Math. Graph Theory.2018,38 :165-175
- [11]LIGANG JIN.Plane graphs without 4- and 5-cycles and without ext-triangular 7-cycles are 3-colorable.SIAM Journal on Discrete Mathematics.2017,31 (3):1836-1847
- [12]Yingli Kang.The 3-colorability of planar graphs without cycles of length 4, 6 and 9.Discrete Mathematics.2016,Vol.339 (No.1):299-307
- [13]王应前.没有4至6-圈的平面图是(1,0,0)-可染的.中国科学(数学).2013 (第11期):1145-1164
- [14]程丽.KdV方程孤子解行列式表示的简易证明.北京联合大学学报(自然科学版).2011 (第2期):70-72
- [15]Yingli Kang.Soliton solution to BKP equation in Wronskian form.Applied Mathematics and Computation.2013,Vol.224 :250–258
|