The performance of semi-supervised Laplacian regularized regression with the least square loss
- 点击量:
- 作者:Baohuai Sheng
- 所属单位:数理与信息工程学院
- 文献类型:期刊
- 发表时间:2017-01-01
- 发表刊物:International Journal of Wavelets, Multiresolution and Information Processing
- 卷号:Vol.15
- 期号:No.2
- 页面范围:1750016
- Issn号:0219-6913;1793-690X
- 是否译文:否
- 关键字:Semi-supervised LapRLS; convex analysis; Gateaux derivative; Gauss kernel; learning rate
- 摘要:The capacity convergence rate for a kind of kernel regularized semi-supervised Laplacian learning algorithm is bounded with the convex analysis approach. The algorithm is a graph-based regression whose structure shares the feature of both the kernel regul
推荐此文