王维凡

professor  

Gender : Male

Alma Mater : 南京大学

Education Level : Graduate student graduate

Degree : Doctorate

Status : 退休

School/Department : 数学科学学院

Date of Employment : 2002-05-01


Paper achievements

Entire Coloring of Graphs Embedded in a Surface of Nonnegative Characteristic

Hits :

Affiliation of Author(s): 数理与信息工程学院

Document Type : 期刊

Journal : Graphs and Combinatorics

Page Number : 1-18

ISSN : 0911-0119;1435-5914

Translation or Not : no

Key Words : Embedded;graph;Euler;characteristic;Entire;coloring;Maximum;degree

Abstract : Let G be a graph embedded in a surface of nonnegative characteristic with maximum degree \. The entire chromatic number \ of G is the least number of colors such that any two adjacent or incident elements in \\cup E \cup F\) have different colors. In this

Pre One : Planar Graphs that Have No Short Cycles with a Chord Are 3-Choosable

Next One : 二部平面图的邻点可区别边色数

Recommend this Article