饶玉春

professor   Supervisor of Doctorate Candidates   Supervisor of Master's Candidates

Gender : Male

Alma Mater : 中国农业科学院

Education Level : Graduate student graduate

Degree : Doctorate

Status : 在岗

School/Department : 生命科学学院

Date of Employment : 2011-08-23

Discipline : Biotechnology Bioscience

Business Address : 浙江师范大学生命科学学院10-319室

Email :


Current position: Home >> Teaching research >> Teaching achievement

total0   0/0 

Personal Profile

 

饶玉春,男,1984年生,博士/博士后,教授(三级),博士生导师,“双龙学者”特聘教授。主要从事水稻等禾谷类作物的分子遗传学研究,以第一作者或者通讯作者身份在Science BulletinNew Phytologist 等权威期刊发表论文80余篇,担任Rice, Breeding Science, Euphytica, Journal of Agriculture and Food Chemistry, Plant Growth Regulation, Rice Science, 《植物学报》《中国水稻科学》等刊物通讯审稿人。



研究方向


植物早衰的发生机制及其育种应用;

植物对非生物胁迫的响应机制。



主要荣誉奖励


浙江省“高校领军人才培养计划”高层次拔尖人才(2022年);

金华市青年拔尖人才(2023年)。



主要学术任职


浙江省发明协会理事、植物遗传专业委员会副主任;

《植物学报》《中国水稻科学》等杂志青年编委;

中国作物学会会员;

浙江省遗传学会会员。 



主要社会兼职


浙江省科技特派员;

浙江师范大学龙游技术转移中心主任。



主持科研项目


1. 国家自然科学基金项目联合基金项目(重点支持项目)(U20A2030)(联合主持);

2. 国家重大科技专项子课题(2016ZX08009003-003);

3. 国家自然科学基金面上项目(31971921)(联合主持);

4. 国家自然科学青年基金(31201183);

5. 中国博士后基金 (2014M561108);

6. 浙江省自然科学基金重点项目(LZ23C130003);

7. 浙江省自然科学基金 (LY16C130001);

8. 浙江省教育厅项目(Y201225687);

9.“重中之重”学科开放基金2011KFJJ008);

10. 其余横向课题近20项。



代表性学术论文


1. Improvements in tolerance to heat stress in Rice via molecular mechanisms and Rice varieties. Agriculture, 2025, 15, 318.(通讯作者,SCI二区,IF=3.3)

2. Green fluorescent FM dyes with prolonged retention for 4D tracking of plasma membrane dynamics in live plants under environmental stress. Biosensors and Bioelectronics, 2025, 271, 117039.(通讯作者,SCI一区topIF=10.7

3. LMI1, a DUF292 protein family gene, regulates immune responses and cell death in rice. The Crop Journal, 2024, 12:1619-1632.(通讯作者,SCI一区top,IF=6.0)

4. OsWUS-driven synthetic apomixis in hybrid rice. Plant Communications, 2024.101136.(共同一作,SCI一区top,IF=9.4)

5. Genome-Wide Identification and Evolutionary Analysis of Functional BBM-like Genes in Plant Species. Genes, 2024,15,1614.(通讯作者,SCI三区,IF=2.8)

6. Genetic loci mining and candidate gene analysis for determining fatty acid composition in Rice. Genes, 2024,15,1372.(通讯作者,SCI三区,IF=2.8)

7. Mechanism of Rice Resistance to Bacterial Leaf Blight via Phytohormones. Plants, 2024, 13, 2541.(通讯作者,SCI二区,IF=4.0)

8. Research Progress on Mechanical Strength of Rice Stalks. Plants, 2024, 13, 1726.(通讯作者,  SCI二区,IF=4.0)

9. WLP3 Encodes the Ribosomal Protein L18 and Regulates Chloroplast Development in Rice. Rice, 2023, 16:59.(通讯作者,SCI一区top,IF=4.78)

10. Identification of QTLs conferring rice leaf inclination angle and analysis of candidate genes. Agronomy-Basel, 2023,13,2891.(通讯作者,SCI二区,IF=3.3)

11. The Mining of genetic loci and the analysis of candidate genes to identify the physical and chemical markers of anti-senescence in Rice. Plants, 2023, 12, 3812.(通讯作者,SCI二区,SCI二区,IF=4.0)

12. Identification of QTLs conferring resistance to bacterial diseases in rice. Plants, 2023, 12(15), 2853.  DOI: 10.3390/plants12152853.(通讯作者,SCI二区,IF=4.0)

13. Development and application of prime editing in plants. Rice Science, 2023, 30(6): 509−522.(通讯作者,SCI二区,IF=5.6)

14. Mapping and candidate gene prediction of qPL7-25: A panicle length QTL in Dongxiang wild rice. Agriculture, 2023, 13, 1623.(通讯作者,SCI二区,IF=3.3)

15. Advances in cloning functional genes for rice yield traits and molecular design breeding in China. Frontiers in plant science, 2023, 14:1206165.(通讯作者,SCI二区top,  IF=5.75)

16. Quantitative trait locus mapping and candidate gene analysis for salt tolerance at bud stage in rice. Frontiers in plant science, 202313:1041081.(通讯作者,SCI二区top,IF=5.75)

17. Disruption of LEAF LESION MIMIC 4 affects ABA synthesis and ROS accumulation in rice. The Crop Journal, 2023, 11:1341-1352.(通讯作者,SCI一区top,IF=4.41)

18. OsSPL88 encodes a Cullin protein that regulates rice growth and development. Frontiers in Genetics,2022,13:918973.(通讯作者,SCI三区,IF=2.8)

19. A rice XANTHINE DEHYDROGENASE gene regulates leaf senescence and response to abiotic stresses. The Crop Journal. 2022,10:310-322.(通讯作者,SCI一区top,IF=4.41)

20. UDP-N-acetylglucosamine pyrophosphorylase enhances rice survival at high temperature. New Phytologist, 2022, 233:344-359.(通讯作者,SCI一区top,IF=10.15)

21. Advance of clustered regularly interspaced short palindromic repeats-Cas9 system and its application in crop improvement, Frontiers in plant science,2022, 13:839001.(通讯作者兼第一作者,SCI二区top,IF=5.75)

22. A base substitution in OsphyC disturbs its interaction with OsphyB and affects flowering time and chlorophyii synthesis in rice. BMC Plant Biology,2022,22:612.(共同一作,SCI二区,IF=4.21

23. Genetic Engineering Technologies for Improving Crop Yield and Quality. Agronomy, 2022,12(4),759.(通讯作者,SCI二区,IF=3.41)

24. OsSPL88 encodes a Cullin protein that regulates rice growth and development. Frontiers in Genetics, 2022.(通讯作者,SCI二区,IF=4.6)

25. SPL36 Encodes a Receptor-like Protein Kinase that Regulates Programmed Cell Death and Defense Responses in Rice. Rice, 2021, 14:34.(通讯作者兼第一作者,SCI一区,IF=4.78)

26. Identification and characterization of short crown root 8, a temperature-sensitive mutant associated with crown root development in Rice. International Journal of Molecular Sciences, 2021, 22, 9868.(通讯作者,SCI二区top,IF=5.92)

27. Fine mapping and candidate gene analysis of leaf tip premature senescence and Dwarf Mutant dls‑1 in Rice. Plant Growth Regulation, 2021, 94:275-285.(通讯作者兼第一作者,SCI三区,IF=3.41)

28. The C2H2 zinc-finger protein lacking rudimentary GLUME 1 regulatesspikelet development in rice. Science Bulletin, 2020,65,753-764.(通讯作者,SCI一区top,IF=11.78)

29. A Method of Effectively Overcoming Tight Functional Linkage Between Genes in Rice by the CRISPR/Cas9 System. Rice Science, 2020,273:180-183.(通讯作者,SCI二区, IF=3.33)

30. MORE FLORET1 Encodes a MYB transcription factor that regulates spikelet development in rice. Plant Physiology, 2020,184:251-265.(共同一作,SCI二区top,IF=8.34

31.  PE‑1, Encoding Heme Oxygenase 1, Impacts Heading Date and Chloroplast Development in Rice (Oryza sativa L.). Journal of Agricultural and Food Chemistry, 2019, 67, 7249-7257. (通讯作者兼第一作者,SCI一区top,IF=5.28)

32. Transcriptome analysis of Xanthomonas oryzae pv. oryzicola exposed to H2O2 reveals horizontal gene transfer contributes to its oxidative stress response. PLoS ONE, 2019, 14(10):e0218844.(通讯作者,SCI三区,IF=2.74)

33. ‘Two-floret spikelet’ as a novel resource has the potential to increase rice yield. Plant Biotechnology Journal, 2018, 16:351-353.(共同一作,SCI二区top,IF=6.84

34. Rational design of high-yield and superior-quality rice. Nature Plants, 2017, 3: 17031.(第三作者,SCI一区top,IF=15.79

35. Multi-tillering dwarf1, a new allele of brittle culm12, affects plant height and tiller in rice. Science Bulletin, 2016, 6123:1810-1817.(通讯作者,SCI三区,IF=2.28)

36. Regulatory role of OsMADS34 in the determination of glumes fate, grain yield, and quality in rice. Frontiers in plant science, 2016.7:01853.(共同一作,SCI二区,IF=4.29)

37. Fine Mapping Identifies a New QTL for Brown Rice Rate in Rice (Oryza Sativa L.). Rice, 2016, 9:4.(共同一作,SCI一区top,IF=3.74)

38. The pleiotropic ABNRMAL FLOWER AND DWARF1 affects plant height, floral development and grain yield in rice. Journal of Integrative Plant Biology2016,586:529-539.(共同一作,SCI二区,IF=3.96)

39. Characterization and cloning of SMALL GRAIN4, a novel DWARF11 allele that affects brassinosteroid biosynthesis in rice. Science Bulletin, 2015, 60 (10) :905-915.共同一作,SCI三区,IF=1.79)

40. EARLY SENESCENCE 1 Encodes a SCAR-like protein2 that affects water Loss in Rice. Plant Physiology. 2015, 169:1225-1239.(第一作者,SCI一区topIF=6.28

41. SMALL GRAIN1, which encodes a mitogen-activated protein kinase4(MKK4), influences grain size in rice. The Plant Journal. 2014, 77(4):547-557.(共同一作,SCI二区topIF=5.97)

42. Recent progress on molecular breeding of rice in china. Plant Cell Reports, 2014, 33:551-564.(第一作者,SCI三区,IF=3.07

43. Genetic analysis of sugar-related traits in rice grain. South African Journal of Botany, 2014, 93:137-141.(共同一作,SCI四区,IF=0.99)

44. Characterization and cloning of a brittle culm mutant (bc88) in rice (Oryza sativa L.). Chinese Science Bulletin, 2013, 58(24):3000-3006.(通讯作者兼第一作者,SCI三区,IF=1.37

45. Map-based cloning proves, qGC6, a major QTL for gel consistency of japonica/indica cross,was responded by Waxy in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2011, 123: 859-867.(共同一作,SCI三区,IF=3.3)

46. Characterization and fine mapping of an early senescence mutant (es-t) in Rice (Oryza sativa L.). Chinese Science Bulletin, 2011, 56(23): 2437-2433.(共同一作,SCI三区,IF=1.32)

47. Genetic Analysis of Traits Related to Leaf Sheath in Rice (Oryza sativa L.). Rice Genomics and Genetics, 2011, 12(3):21-30.(共同一作)

48. Genetic analysis of leaf folder resistance in rice. Journal of Genetics & Genomics, 2010, 37 (5): 325-331.(第一作者,SCI二区,IF=1.49

49. Characterization and fine mapping of non-panicle mutant (nop) in rice. Rice Science, 2009, 16(3): 165-172.(共同一作,SCI二区,IF=5.6)

50. 水稻穗部性状 QTL 定位及候选基因分析. 植物学报,2024, 59 (2):217-230.(通讯作者)

51. 水稻突变体pe-1对弱光胁迫的响应机制. 植物学报,2024, 59 (4):574-584.(通讯作者)

52. 植物黄嘌呤脱氢酶参与代谢途径及其功能研究进展. 生物工程学报, 2024,40(10):3321-3336.(通讯作者)

53. 水稻蒸煮品质相关 QTL 定位及候选基因分析.生物工程学报, 2024, 40(1):122-136.(通讯作者)

54. 水稻叶绿素含量 QTL 定位与候选基因分析. 植物学报,2023, 58 (3): 394–403.(通讯作者)

55. 水稻茎秆细胞壁相关组分含量 QTL 定位及候选基因分析.植物学报,2023, 58 (6):882–892.(通讯作者)

56. 基于CRISPR-Cas9基因编辑技术在作物中的应用.生物工程学报, 2023,39(2):399-424.(通讯作者)

57. DMT1编码一个丝氨酸/半胱氨酸蛋白酶调控水稻分蘖并参与干旱胁迫响应. 中国科学:生命科学,2023,53(4): 529-542.(通讯作者)

58. 水稻籽粒维生素E QTL 挖掘及候选基因分析. 植物学报,2022,57(2): 157-170.(通讯作者)

59. 水稻黄绿叶调控基因YGL18的克隆与功能解析. 植物学报,2022,57(3): 276-287.(通讯作者)

60. 水稻剑叶形态QTL定位及候选基因分析. 中国科学:生命科学,2021,51(5):567-578.(通讯作者)

61. 水稻叶片水势的QTL定位与候选基因分析. 植物学报,2021,56(3): 275-283.(通讯作者)

62. 水稻叶片衰老基因 LPS1 的克隆与功能研究. 中国水稻科学,2021, 35(5):427-438.(通讯作者)

63. 水稻籽粒镉积累QTL定位及候选基因分析. 植物学报,2021,56(1): 25-32.(通讯作者)

64. 水稻籽粒砷、铜、铁、汞、锌含量QTL挖掘及候选基因分析. 中国科学:生命科学,2020,50(6):623-632.(通讯作者)

65. 水稻早衰突变体LS-es1的基因定位及候选基因分析. 植物学报,2019,54(5): 606-619.(通讯作者)

66. 水稻类病变突变体spl-3t的精细定位与候选基因分析. 中国科学:生命科学,2018,48(10):1101-1114.(通讯作者)

67. 水稻矮化小穗突变d18新等位基因的发现及生理功能分析. 中国科学:生命科学,2018,48(6):692-704.(通讯作者)

68. 水稻耐金属离子胁迫的QTL分析.中国水稻科学,2018,32(1):23-34.(通讯作者)

69. 水稻叶片早衰成因及分子机理研究进展. 植物学报,2017, 52(1):102-112.(通讯作者)

70. 水稻ES1参与生物钟基因表达调控以及逆境胁迫响应. 植物学报, 2016, 51(6):743-756.(通讯作者)

71. 水稻纤维素合酶催化亚基的编码基因BC88 的表达分析.中国水稻科学,2015, 29(2):126-134.(通讯作者)



教学情况


1. 近8年教学考核业绩均为A

2. 2021“以生为本、技能把控、创新导向一体化的生物实验素养提升模式”浙江师范大学第十一届教学成果奖 二等奖(第一完成人);

3. 主讲《遗传学》《遗传学实验》《基因工程》《基因工程实验》《基因组学》《表观遗传学》等核心课程;

4. 主编教材《普通生物学实验》(第一、二版)、《植物分子生物学技术及其应用》(第一、二版),参编专著《水稻分子育种技术指南》;

5. 主持教改项目:

5.1. 2023年浙江师范大学重点教材建设项目,《普通生物学实验》教材编写,主持,结题优秀;

5.2. 2023年校级教学改革项目(重点项目):导师制在拔尖创新人才培养中的探索与实践;拔尖创新人才培养初阳专项(重点),主持,结题;

5.3. 2022年浙江师范大学一流本科课程重点项目:《普通生物学》线上。重点资助项目;主持,结题;

5.4. 2021年教育部高等教育司第二批产学合作协同育人项目:《基于虚拟仿真技术的大学遗传学实验教学建设与实践》,参与,结题;

5.5. 2021年校级教学改革项目:《疫情影响下浙江师范大学化学与生命科学学院实验教学现状改革研究》,主持,结题;

5.6. 2020年实验教学示范中心软件建设项目:《普通生物学实验》教材编写,主持,结题;

5.7. 2019年浙江省教改项目《生物科学专业拔尖人才的培养模式初探》(编号:jg20190101),主持, 结题优秀;

5.8. 2019年校级青年教改项目《生物科学专业“三位一体”综合评价招生模式的效果研究》,主持,结题;

5.9. 2018年第三批“十二五”省级实验教学示范中心重点建设项目软件建设立项资助项目,主持,结题:

《植物分子生物学技术及其应用》,实验教材项目;

《遗传学实验中若干遗传规律的再探究》,实验开发项目;

5.10. 2017年校级青年教改项目 《经典遗传学规律发生偏离现象的探究》主持, 结题。



人才培养


1. 坚持以学生为中心,获评“全国大学生生命科学创新创业大赛优秀指导老师”“浙江省优秀硕士论文指导老师”,浙江师范大学“我最喜爱的研究生导师”“励行奖教金”等;

2. 指导研究生、本科生毕业论文120余人次,多人获浙江省优秀硕士论文、浙江省优秀毕业生等称号;

3. 大学生创新工作室“禾作创新工作室”负责人,指导学生参加全国及省内的各种大型赛事并多次并获奖,包括中国“互联网+”大学生创新创业大赛国赛金奖、全国“挑战杯”大学生课外学术科技作品竞赛国赛一等奖、中国“挑战杯”大学生创业计划竞赛省赛特等奖、全国大学生生命科学竞赛国赛一等奖(7次)、浙江省第大学生职业生涯规划与创业大赛一等奖;

4. 指导国家级大学生创新创业训练计划项目、浙江省大学生科技创新活动计划暨新苗人才计划项目等各类学生科研项目多项。



热忱欢迎勤于思考、踏实肯干、主动作为的热血青年报考研究生,共谋发展!


有意者请将个人简历发至 ryc@zjnu.cnryc1984@163.com地址:浙江省金华市迎宾大道#688,浙江师范大学生命科学学院10-319室,321004