![]()
汝少雷

-
副教授
- 性别 : 男
- 毕业院校 : 浙江大学
- 在职信息 : 在岗
- 所在单位 : 数学科学学院
- 入职时间 : 2016-01-04
访问量 :
-
[1] 不可压Navier-Stokes方程在变指标函数空间上的整体适定性.中国科学(数学).2018 (第10期):1427-1442
-
[2] Global well-posedness of the incompressible fractional Navier–Stokes equations in Fourier–Besov spaces with variable exponents.Computers & Mathematics with Applications.2018
-
[3] Ru, Shaolei.Global solution of the 3-D incompressible Navier-Stokes equations in the Besov spaces (B) over dot(r1,r2,r 3)(sigma,1).Mathematical Methods in the Applied Sciences.2017,Vol.40 (No.18):6790-6800
-
[4] Ru, Shaolei.Global solution of the 3D incompressible Navier-Stokes equations in the Besov spaces (R) over dot (sigma,1)(r1,r2,r3).ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK.2017,Vol.68 (No.2)
-
[5] Ru, Shaolei.Frequency-Uniform Decomposition, Function Spaces Xp,qs, and Applications to Nonlinear Evolution Equations.JOURNAL OF FUNCTION SPACES AND APPLICATIONS.2013
-
[6] Ru, Shaolei.THE WELL-POSEDNESS OF NONLINEAR SCHRODINGER EQUATIONS IN TRIEBEL-TYPE SPACES.Pacific journal of mathematics.2015,Vol.274 (No.2)
-
[7] Ru, Shaolei.The Cauchy problem for nonlinear Schrodinger equations in modulation spaces.Nonlinear analysis. Real world applications.2015,Vol.24
-
[8] Shaolei Ru.Frequency-Uniform Decomposition, Function Spaces , and Applications to Nonlinear Evolution Equations.Journal of Function Spaces and Applications.2013,Vol.2013
-
[9] Shaolei Ru.The solutions for nonlinear Schr?dinger equations.Nonlinear Analysis, Theory, Methods and Applications.2014,Vol.95 :117-129
-
[10] Shaolei Ru.The Cauchy problem for nonlinear Schr?dinger equations in modulation spaces.Nonlinear Analysis: Real World Applications.2015,Vol.24 :83-97
-
[11] Shaolei Ru.The well-posedness of nonlinear Schr?dinger equations in Triebel-type spaces.Pacific Journal of Mathematics.2015,Vol.274 (No.2):325-354
-
[12] Ru, Shaolei.The global well-posedness of the modified quasi-geostrophic equation in frequency spaces..Applied Mathematics Letters.2015,Vol.43 :1-4
-
[13] Shaolei Ru.Global solution of the critical Burgers equation in N Dimensions.Computers & Mathematics with Applications.2017,Vol.74 (No.2):325-335
-
[14] Shaolei Ru.Global solution of the 3D incompressible Navier–Stokes equations in the Besov spaces \({\dot{\varvec{R}}}_{{\varvec{r}}_{\varvec{1}},{\varvec{r}}_{{\varvec{2}}},{\varvec{r}}_{{\varvec{3}}}}^{{\varvec{\sigma }},{\varvec{1}}}\).Zeitschrift f¡§1r angewandte Mathematik und Phys.2017,Vol.68 (No.2)