Gao Xianlong

professor   Supervisor of Doctorate Candidates   Supervisor of Master's Candidates

Honors and Titles : Program for New Century Excellent Talents in University

Gender : Male

Alma Mater : University of Science and Technology of China

Education Level : Graduate student graduate

Degree : Doctorate

Status : 在岗

School/Department : College of Mathematics, Physics and Information Engineering

Date of Employment : 2007-03-29

Discipline : physics

Business Address : Science Building 29#-429

Contact Information : 0579-82298507, 667810(short)

Email :


Paper achievements

Speckle无序对一维谐振势中自旋极化费米气体的影响<sup>*</sup>

Hits :

First Author : 汪泾泾

Affiliation of Author(s): 数理与信息工程学院

Date of Publication : 2011-01-01

Document Type : 期刊

Journal : 浙江师范大学学报(自然科学版)

Issue : 第4期

Page Number : 420-424

ISSN : 1001-5051

Translation or Not : no

Key Words : 无序;一维;自旋极化;费米气体

Abstract : 基于局域密度近似的Bethe-ansatz方法,研究了谐振势中两组分一维自旋极化费米气体的基态性质,以及无序对其影响.对于无外势的干净系统,基态是完全配对的Bardeen-Cooper-Schrieffer(BCS)相,或部分极化的Fulde-Ferrell-Larkin-Ovchinnikov(FFLO)相,或完全极化的正常相.当系统中存在谐振势但仍干净时,系统成为两相混合的状态:中间部分是FFLO相;边缘部分或为BCS相,或为正常相.这之间存在一个临界相,即纯的FFLO相.发现当外势和无序共同存在,总

Pre One : 一维费米原子系统中的拓扑超流和Majorana费米子<sup>*</sup>

Next One : Anderson localization of Cooper pairs and Majorana fermions in an ultracold atomic Fermi gas with synthetic spin-orbit coupling

Recommend this Article

Personal Profile

Born at Anhui Province, Feixi, Ph.D., Professor,

In 1998, Anhui University Department of Applied Physics, Theoretical Physics, Bachelor, Master,

In 2001, University of Science and Technology of China, Department of Astronomy and Applied Physics, Condensed matter physics, Ph.D


Research Interests:

1. Quantum properties of low-dimensional Fermi gas: Studying the exotic quantum phases due to the fermion species, pairing, the external potential, and the interaction;

2. Density functional theory of low-dimensioanl system;

Homogeneous low-dimensional systems are strictly solvable in many cases (eg using the Bethe-Ansatz technique, Bosonization, etc.), and for the inhomogeneous systems they are more complicated and can often be solved by using density functional theory. We study the applications of the density functional theory in the model system. Related examples can be found in the application of density functional theory in the inhomogeneous Hubbard model, non-uniform Lieb-Wu model, Anderson model and Bose-Fermi mixed system. The same idea can be used to deal with disordered problems, finite temperature effects, various dynamical problems;

3. Numerical study of low-dimensional strong correlation system: By means of strict diagonalization and numerical renormalization group, we discuss the ground state, especially the correlation function of low-dimensional systems;

4. Excitation properties of low-dimensional strongly correlation systems: studying low energy excitation such as spin-charge separation phenomenon, spin-drag effect due to the relative motion of different types of fermions, and the use of variational methods and local density approximation to solve the finite temperature, low energy excitation mode.


For students:

I am currently tutoring several graduate students for scientific research. At the same time, I am organizing and supervising a number of junior undergraduates for research and develop their research interests.

See details at http://physics.zjnu.edu.cn/2016/0303/c2480a26226/page.htm

Research team http://course.zjnu.cn/qm/gao/