Gao Xianlong

professor   Supervisor of Doctorate Candidates   Supervisor of Master's Candidates

Honors and Titles : Program for New Century Excellent Talents in University

Gender : Male

Alma Mater : University of Science and Technology of China

Education Level : Graduate student graduate

Degree : Doctorate

Status : 在岗

School/Department : College of Mathematics, Physics and Information Engineering

Date of Employment : 2007-03-29

Discipline : physics

Business Address : Science Building 29#-429

Contact Information : 0579-82298507, 667810(short)

Email :


Paper achievements

具有自旋轨道耦合的冷原子费米气中的拓扑超流和FFLO超流

Hits :

First Author : 王俊

Affiliation of Author(s): 数理与信息工程学院

Date of Publication : 2015-01-01

Document Type : 期刊

Journal : 浙江师范大学学报(自然科学版)

Volume: 第38卷

Issue : 第2期

Page Number : 129-132

ISSN : 1001-5051

Translation or Not : no

Key Words : 自旋轨道耦合;拓扑超流;Majorana费米子;FFLO超流

Abstract : 研究了具有自旋轨道耦合的冷原子费米气在外磁场作用下的物理性质.通过自洽求解Bogoliubove-de Gennes方程,发现了在不同磁场强度和粒子填充数下,体系分别存在拓扑超流态和Fulde-Ferrell-LarkinOvchinnikov超流态.当体系处于拓扑超流态时,存在零能Majorana费米子.

Pre One : Phase diagram of the Fermi–Hubbard model with spin-dependent external potentials: A DMRG study

Next One : Almost mobility edges and the existence of critical regions in one-dimensional quasiperiodic lattices

Recommend this Article

Personal Profile

Born at Anhui Province, Feixi, Ph.D., Professor,

In 1998, Anhui University Department of Applied Physics, Theoretical Physics, Bachelor, Master,

In 2001, University of Science and Technology of China, Department of Astronomy and Applied Physics, Condensed matter physics, Ph.D


Research Interests:

1. Quantum properties of low-dimensional Fermi gas: Studying the exotic quantum phases due to the fermion species, pairing, the external potential, and the interaction;

2. Density functional theory of low-dimensioanl system;

Homogeneous low-dimensional systems are strictly solvable in many cases (eg using the Bethe-Ansatz technique, Bosonization, etc.), and for the inhomogeneous systems they are more complicated and can often be solved by using density functional theory. We study the applications of the density functional theory in the model system. Related examples can be found in the application of density functional theory in the inhomogeneous Hubbard model, non-uniform Lieb-Wu model, Anderson model and Bose-Fermi mixed system. The same idea can be used to deal with disordered problems, finite temperature effects, various dynamical problems;

3. Numerical study of low-dimensional strong correlation system: By means of strict diagonalization and numerical renormalization group, we discuss the ground state, especially the correlation function of low-dimensional systems;

4. Excitation properties of low-dimensional strongly correlation systems: studying low energy excitation such as spin-charge separation phenomenon, spin-drag effect due to the relative motion of different types of fermions, and the use of variational methods and local density approximation to solve the finite temperature, low energy excitation mode.


For students:

I am currently tutoring several graduate students for scientific research. At the same time, I am organizing and supervising a number of junior undergraduates for research and develop their research interests.

See details at http://physics.zjnu.edu.cn/2016/0303/c2480a26226/page.htm

Research team http://course.zjnu.cn/qm/gao/