Zhou Xiaoyan

associate professor  

Gender : Female

Alma Mater : 山西大学

Education Level : Graduate student graduate

Degree : Doctorate

Status : 在岗

School/Department : 物理与电子信息工程学院

Date of Employment : 2005-07-01

Discipline : physics

Business Address : 29-541

Email :


Paper achievements

Microwave irradiation synthesis of Co<sub>3</sub>O<sub>4</sub> quantum dots/graphene composite as anode materials for Li-ion battery

Hits :

First Author : Xiaoyan Zhou

Affiliation of Author(s): 数理与信息工程学院

Date of Publication : 2014-01-01

Document Type : 期刊

Journal : Electrochimica Acta

Volume: Vol.143

Page Number : 175-179

ISSN : 0013-4686

Translation or Not : no

Key Words : Co<sub>3</sub>O<sub>4</sub>;Quantum;dot;Graphene;Microwave;irradiation;Anode;material

Abstract : Co 3 O 4  quantum dots/graphene composites were synthesized by a facile and efficient microwave irradiation method, and they were analyzed using XRD, TEM, HRTEM, and TG. Uniform Co 3 O 4  nanocrystals of about 3-8 nm with a high density are homogeneously

Pre One : 机械振动驱动碳纳米管中水的输运规律

Next One : Nanoleaf-on-sheet CuO/graphene composites: Microwave-assisted assemble and excellent electrochemical performances for lithium ion batteries

Recommend this Article

Personal Profile

主讲课程

主讲本科课程:普通物理力学、大学物理B、大学物理B实验

 

学术兴趣及主要研究方向

近年来主要从事受限在纳米尺度下分子、离子的动力学行为的研究。主要包括纳米通道中水的定向输运行为;受限在纳米通道中的水的结构相变;一维气体水合物的性质;纳米通道离子电导率等。这些研究有助于理解分子及离子在受限环境中的行为,还为纳米流体器件的设计、海水淡化、污水处理、离子分离技术等提供了理论基础。

 

科研项目

1 无阀纳米泵中流的翻转与共振现象的研究。国家自然科学基金青年基金,18万,2015-2018,主持

2 非平衡扰动驱动纳米孔道中的水流动发电的机理研究,国家自然科学基金青年基金,18万,2010-2013,参与

3. 利用受限在石墨烯片层间流体流动发电的纳米能量转换器,国家自然科学基金面上项目 60万,2018.1-2022.12,参与

 

发表论文

 

1.      Wei M, Xu C, Zhou X, et al. Transition from nanobubble-induced-blockage to enhancing water flux[J]. Journal of Molecular Liquids, 2023, 390: 122827.

2.      Xu, C., Li, J., Wei, M., Zhou, X., & Lu, H. (2023). Structure and Stability of nitrogen hydrate in a single-walled carbon nanotube under external electric fields[J]. Chinese Physics B., 2023,32076402.

3.      Feng Q, Li J, Zhou X, et al. Effect of an electric field on dewetting transition of nitrogen-water system[J]. Chinese Physics B, 2022, 31(3): 036801.

4.      Li J, Lu H, Zhou X. Electric field triggered release of gas from a quasi-one-dimensional hydrate in the carbon nanotube[J]. Nanoscale, 2020, 12(24): 12801-12808.

5.      Li W, Zuo X, Zhou X, et al. Effect of aggregated gas molecules on dewetting transition of water between nanoscale hydrophobic plates[J]. The Journal of Chemical Physics, 2019, 150(10): 104702.

6.      Zhou X, Zhu F. Calculating single-channel permeability and conductance from transition paths[J]. Journal of Chemical Information and Modeling, 2019, 59(2): 777-785.

7.      Zhou X, Zhu F. Kinetic mechanism for water in vibrating carbon nanotubes[J]. Physical Review E, 2018, 98(3): 032410.

8.      Zeng L, Zhou X, Huang X, et al. Phase transition-like behavior of the water monolayer close to the polarized surface of a nanotube[J]. Physical Chemistry Chemical Physics, 2018, 20(31): 20391-20397.

9.      Zhou X, Wu F, Liu Y, et al. Current inversions induced by resonant coupling to surface waves in a nanosized water pump[J]. Physical Review E, 2015, 92(5): 053017.

10.   Zhou X Y, Kou J L, Nie X C, et al. Nano watermill driven by revolving charge[J]. Chinese Physics B, 2015, 24(7): 074702.

11.   Mei F, Zhou X, Kou J, et al. A transition between bistable ice when coupling electric field and nanoconfinement[J]. The Journal of Chemical Physics, 2015, 142(13): 134704.

12.   Zhou X, Wu F, Kou J, et al. Vibrating-charge-driven water pump controlled by the deformation of the carbon nanotube[J]. The Journal of Physical Chemistry B, 2013, 117(39): 11681-11686.

13.   Zhou X, Wang C, Wu F, et al. The ice-like water monolayer near the wall makes inner water shells diffuse faster inside a charged nanotube[J]. The Journal of chemical physics, 2013, 138(20).

14.   Lu H, Nie X, Wu F, Zhou, X. Y, et al. Controllable transport of water through nanochannel by rachet-like mechanism[J]. The Journal of Chemical Physics, 2012, 136(17): 174511.