杨敏波

基本信息Personal Information

教授

性别 : 男

毕业院校 : 中科院研究生院

学历 : 博士研究生毕业

学位 : 博士学位

在职信息 : 在岗

所在单位 : 数学科学学院

入职时间 : 2005年07月01日

办公地点 : 20-207

教师其他联系方式Other Contact Information

邮箱 :

扫描关注

个人简介Personal Profile

1. 基本信息


杨敏波,浙江师范大学数学系教授,博士生导师。

主要研究兴趣:非线性分析与椭圆型偏微分方程,特别是非局域的椭圆与抛物方程。

2. 科研项目


11.《由Hardy-Littlewood-Sobolev型不等式衍生出来的几个非线性分析问题》,12471114,国家自然科学基金面上项目,2025--2028,44万,主持

10.《若干数学物理中的非线性微分方程的解及其性质研究》,LZ22A010001,浙江省自然科学基金重点项目,202201--202412,主持9.《浙江师范大学与巴西利亚大学非线性分析与偏微分方程研究领域的科研合作和人才培养》,国家留学基金管理委员会,202010--202210,主持

8.《非局域作用下非线性薛定谔方程解的分类》,国家自然科学基金委与英国皇家学会合作交流项目,202007--202206,主持

7.《具有非局域或强不定特性的非线性问题的变分和非变分方法》,国家自然科学基金面上项目,202001--202312,主持

6.《非局部微分方程的变分方法研究》,国家自然科学基金面上项目,201601--201912,主持

5.《非线性Choquard方程与Dirac方程的奇异扰动问题》,省自然科学基金项目,201501--201712,主持

4.《薛定鄂方程及其相关问题的变分方法研究》,国家自然科学基金青年项目,201201--201412,主持

3.《利用变分方法研究一类非局部薛定谔方程解的存在性》Existencia de solucao para uma classe de Equacoes de Schrodinger  nao locais via metodos variacionais,巴西国家科学技术发展委员会CNPq项目,201308--201408,主持

2.《一类非线性椭圆方程正解与变号解的存在性与非存在性》 Sobre Existenciae Na-Existencia de Solucos Positivas e Nodais para problemas elipticos na lineares, 巴西巴西利亚联邦区FAP-DF项目,2018,参与

1.《无穷维Hamiltion系统同宿轨的存在性与多解性问题研究》,省自然科学基金项目,200801--201012,主持

3. 代表论文


主要关注与研究非局域椭圆型偏微分方程(组)解的存在性、渐近行为与集中性质;非局域临界热方程与Hartree方程解的稳定性与爆破分析;非局域Lane-Emden方程及其相关问题解的分类;具有强不定变分结构的微分方程解的存在性与集中性;拟线性薛定谔方程的变分与分歧方法。J. Lond. Math. Soc.、Calc. Var. Partial Differential Equations、Mathematische Zeitschrift、Commun. Anal. Geom.、J. Differential Equations、Nonlinearity、Commun. Contemp. Math.、Pacific Journal of Mathematics、中国科学(中、英)等国内外高水平学术期刊上录用发表论文120余篇。

50. D. Cassani, Minbo Yang, Xinyun Zhang, Existence of multi-bubbling solutions for a critical Hartree type equation: local Pohozaev identities methodsCalc. Var. Partial Differential Equations64 (2025), no. 7, Paper No. 222.

49. Minbo Yang, Weiwei Ye, Shuijin Zhang, On a critical time-harmonic Maxwell equation in nonlocal media, Proc. Roy. Soc. Edinb. A, https://doi.org/10.1017/prm.2024.11

48. Lele Du, Xiang Li and Minbo Yang, On the Lane-Emden Conjecture with Convolution Part, J. Lond. Math. Soc. (2), 111 (2025), no.1, Paper No. e70064.

47. Jian Zhang, Vicentiu Radulescu, Minbo Yang, Jiazheng Zhou, Global existence and blow-up solutions for a parabolic equation with critical nonlocal interactions, J. Dynam. Differential Equations, 37(2025), no. 1, 687--725.

46. Minbo Yang, Weiwei Ye, Xinyun Zhang, Nondegeneracy of solutions for a bi-Harmonic Hartree equation and its applications, Journal of Differential Equations428 (2025) 796--849.

45. P. Piccione, Minbo Yang, Shuneng Zhao, Quantitative profile decomposition and stability for anonlocal Sobolev inequality, Journal of Differential Equations 417 (2025) 64--104

44. Minbo Yang, Jefferson Abrantes, Pedro Ubillc, Jiazheng Zhou, Global multiplicity of positive solutions for asublinear elliptic equation in RN, Journal of Differential Equations, 416 (2025) 159--189.

43. Xiang Li, Zifei Shen, M. Squassina, Minbo Yang, Stein-Weiss type inequality on the upper half space and its applications, Mathematische Zeitschrift, (2024) 306:22

42. Weiwei Ye, Fashun Gao, Vicentiu Radulesu, Minbo Yang, Construction of infinitely many solutions for two-component Bose-Einstein condensates with nonlocal critical interaction, J. Differential Equations, 375 (2023) 415--474.

41. M. Squassina, Minbo Yang, Shuneng Zhao, Local uniqueness of blow-up solutions for critical Hartree equations in bounded domain, Calc. Var. Partial Differential Equations, (2023) 62:217

40. K. Silva, S.M Sousa, C.A.Santos, Minbo Yang, Multiplicity of solutions for Brezis-Oswald type problems with indefinite Kirchhoff operators, Z. Angew. Math. Phys.74 (2023), no. 6, Paper No. 228, 20 pp.

39. Minbo Yang, Shuneng Zhao, Blow-up behavior of solutions to critical Hartree equations on bounded domain, Journal of Geometric Analysis, (2023) 33:191.

38. Zifei Shen, Minbo Yang, Weiwei Ye, Semiclassical Nodal Solutions for the Choquard equation, Differential Integral Equations, 36, 9-10 (2023), 775--812.

37.Minbo Yang, Weiwei Ye, Shuneng Zhao, Existence of concentrating solutions of the Hartree type Brezis-Nirenberg problem, J. Differential Equations, 344, (2023), 260--324.

36. Minbo Yang, C. A. Santos, P. Ubilla, Jiazheng Zhou, Multiple solutions for a singular quasilinear Schrodinger equation in R^N, Discrete Contin. Dyn. Syst. A, 43, (2023), 507--536.

35. Fashun Gao, Vitaly Moroz, Minbo Yang*, Shunneng Zhao, Construction of infinitely many solutions for a critical Choquard equation via local Pohoaev identities, Calc. Var. Partial Differential Equations, (2022) 61:222.

34. Siyu Chen, Carlos. Santos, Minbo Yang, Jiazheng Zhou, Global multiplicity of solutions for a defocusing quasilinear Schrodinger equation with singular term, Sci. China Math., 6620231789--1812.

33. Weiwei Ye, Zifei Shen, Minbo Yang. Normalized solutions for a critical Hartree equation with perturbation, Journal of Geometric Analysis, (2022) 32:242

32. Liejun Shen, V. Radulescu, Minbo Yang, Planar Schrodinger-Choquard equations with potentials vanishing at infinity: the critical case, J. Differential Equations, 329, (2022), 206--254.

31. Liejun Shen, Marco Squassina, Minbo Yang, Critical gauged Schrodinger equations in $\R^2$ with vanishing potentials, Discrete Contin. Dyn. Syst. A, 42(9), (2022), 4415--4438.

30. Michael Melgaard, Minbo Yang*, Xianmei Zhou, Regularity, symmetry and asymptotic behavior of solutions for some Stein-Weiss type integral systems, Pacific Journal of Mathematics, 317(2022),153--186.

29. Minbo Yang, V. Radulescu, Xianmei Zhou, Critical Stein-Weiss elliptic systems: symmetry, regularity and asymptotic properties of solutions, Calc. Var. Partial Differential Equations, (2022) 61:109

28. L. Du, F. Gao, Minbo Yang*, On elliptic equations with Stein-Weiss type convolution parts, Mathematische Zeitschrift, 301 (2022), 2185--2225.

27. C.O. Alves, Minbo Yang, Existence and multiplicity of solutions for a class of indefinite variational problemsCommunications in Analysis and Geometry, 30(9)2022,1933--1954.

26. Xiang Li, Minbo Yang*, Xianmei Zhou, Qualitative properties and classification of solutions for elliptic equations with Stein-Weiss type convolution part, Sci. China Math., 65 (10),(2022),2123--2150.

25. Fashun Gao, V. Radulescu, Minbo Yang, Yu Zheng, Standing waves for pseudo-relativistic Hartree equation with Berestycki-Lions nonlinearity,  J. Differential Equations, 295 (2021), 70--112.

24. Fashun Gao, Haidong Liu, Vitaly Moroz, Minbo Yang, High energy positive solutions for a coupled Hartree system with Hardy-Littlewood-Sobolev critical exponents, J. Differential Equations, 287(2021) ,329--375.

23. Minbo Yang, Fukun Zhao and Shunneng Zhao, Classification of solutions to Hartree equation with double Hardy-Littlewood-Sobolev critical parts, Discrete Contin. Dyn. Syst. A, 2021, 41(11), 5209--5241.

22. Minbo Yang*, Xianmei Zhou, On a coupled Schrodinger system with Stein-Weiss type convolution part, Journal of Geometric Analysis, 31,(2021), 10263—10303.

21. Carlos. Santos, Minbo Yang*, Jiazheng Zhou, Global multiplicity of solutions for a modified elliptic problem with singular terms, Nonlinearity, 34 (2021), 7842--7871.

20. Y. Ding, F. Gao, Minbo Yang*, Semiclassical states for Choquard type equations with critical growth: critical frequency case, Nonlinearity,33 (2020), 6695--6728.

19. F. Gao, Edcarlos. Silva, Minbo Yang*, J. Zhou, Existence of solutions for critical Choquard equations via the concentration compactness method, Proc. Roy. Soc. Edinb. A , 15022020, 921--954.

18. Lele Du, Minbo Yang*, Uniqueness and nondegeneracy of solutions for a critical nonlocal equation, Discrete Contin. Dyn. Syst. A., 2019,39(10): 5847--5866.

17. Lushun Wang, Minbo Yang, Yu Zheng, Infinitely many segregated solutions for coupled nonlinear Schrodinger systems, Discrete Contin. Dyn. Syst. A. 2019,39(10):6069--6102.

16. Minbo Yang*, Carlos. A. Santos, Jiazheng Zhou, Least action nodal solutions for a quasilinear defocusing Schrodinger equation with supercritical nonlinearity, Commun.Contemp. Math., 2019,21 (5),1850026.

15. Zifei Shen, Fashun Gao, Minbo Yang*, On critical Choquard equation with potential well, Discrete Contin. Dyn. Syst. A., 2018,38(7):3669--3695.

14. Fashun Gao, Minbo Yang*, A strongly indefinite Choquard equation with critical exponent due to the Hardy-Littlewood-Sobolev inequality, Commun.Contemp. Math.20(2018),no. 4, 1750037, 22 pp.

13. Fashun Gao, Minbo Yang*, The Brezis-Nirenberg type critical problem for nonlinear Choquard equation, Sci. China Math.61(2018), no. 7,1219--1242.

12. Minbo Yang*, Semiclassical ground state solutions for a Choquard type equation in R^2 with critical exponential growth, ESAIM: Control, Optimisation and Calculus of Variations, 24 (2018), 177--209.

11. C. O. Alves, Fashun Gao, M. SquassinaMinbo Yang*, Singularly perturbed critical Choquard equations, J. Differential Equations, 63(2017),no.7, 3943--3988.

10. C.O. Alves, A. Nobrega, Minbo Yang*, Multi-bump solutions for Choquard equation with deepening potential well, Calc. Var. Partial Differential Equations, 55 (2016), 48, 28 pp

9. C.O. Alves, Minbo Yang, Existence of positive multi-bump solutions for a Schrodinger-Poisson system in R^3, Discrete Contin. Dyn. Syst. A. 36 (2016), 5881--5910.

8. Minbo Yang*, Concentration of Positive Ground State Solutions for Schrödinger–Maxwell Systems with Critical Growth. Adv. Nonlinear Stud.,16 (2016), 389--408.

7. C. O. Alves, Minbo Yang, Investigating the multiplicity and concentration behaviour of solutions for a quasi-linear Choquard equation via the penalization method, Proc. Roy. Soc. Edinb., A,146(2016), 23--58.

6. C. O. Alves, D. Cassani, C. Tarsi and Minbo Yang*, Existence and concentration of ground state solutions for a critical nonlocal Schrodinger equation in R2, J. Differential Equations, 261 (2016),1933--1972.

5. C. O. Alves, Minbo Yang*, Existence of semiclassical ground state solutions for a generalized Choquard equation. J. Differential Equations, 257(2014), no. 11, 4133--4164.

4. Minbo Yang*, Yanheng Ding,  Existence of semiclassical states for a quasilinear Schrödinger equation with critical exponent in RN. Ann. Mat. Pura Appl. (4) 192 (2013), no. 5, 783--804.

3. Minbo Yang*, Fukun Zhao, Yanheng Ding, On the existence of solutions for Schrödinger-Maxwell systems in R3. Rocky Mountain J. Math., 42(2012), no. 5, 1655--1674.

2. Wenxiong Chen, Minbo Yang, Yanheng Ding, Homoclinic orbits of first order discrete Hamiltonian systems with super linear terms. Sci. China Math.,54 (2011), no. 12, 2583--2596.

1. Minbo Yang*, Ground state solutions for a periodic Schrödinger equation with superlinear nonlinearities, Nonlinear Analysis TMA . 72 (2010), no. 5, 2620--2627.


4. 人才培养


 正在指导博士5人,硕士4人,协助指导博士4人。已指导毕业30余位硕士与博士,其中多名学生考取北师大、华师大、浙师大、北京理工等国内高校博士或获得全额奖学金到意大利攻读博士学位,三人获评省优秀博士学位论文或省优秀硕士学位论文,部分研究生的学位论文发表于国际著名数学刊物Mathematische Zeitschrift、Calc. Var. Partial Differential Equations、J. Differential Equations、Commun. Contemp. Math.、Discrete Contin. Dyn. Syst. A、Pacific Journal of Mathematics、Journal of Geometric Analysis、Proc. Roy. Soc. Edinb. A、Sci.China Math. 部分优秀学生:

高发顺,2018年博士毕业,与沈自飞教授共同指导,浙江省优秀博士学位论文获得者,已获国家自然科学基金面上项目、青年基金资助,任职于河南城建学院。

    雨,2019年博士毕业,与沈自飞教授共同指导,已获国家青年基金资助,任职于惠州学院。

李硕硕,2020年博士毕业,与沈自飞教授共同指导,任职于淮北师范大学。

赵顺能,2023年博士毕业,已获国家青年基金资助,任职于浙江师范大学。

陈思雨,2023年博士毕业,已获国家青年基金资助,任职于嘉兴大学。

周  粉,2023年博士毕业,与沈自飞教授共同指导,任职于云南师范大学。

张水金,2024年博士毕业,任职于赣南师范大学。

叶薇薇,2024年博士毕业,与沈自飞教授共同指导,任职于阜阳师范大学。

李  祥,2025年博士毕业,与沈自飞教授共同指导,任职于湖州师范大学。

周  凡,2025年博士毕业,任职于江苏泰州学院。

张  剑,2025年博士毕业,任职于西华大学。

攻读博士的硕士毕业生:汤厚志(华东师范大学博士),杜乐乐(意大利因苏布里亚大学博士,罗马一大博士后,省优秀硕士学位论文),  坤(北京师范大学博士),周娴媚(华东师范大学博士,省优秀硕士学位论文),张智慧(北京理工大学博士)。

正在指导的博士:张鑫沄、陆琪恺、李佳默、张轩昂、冯 涛、单威威、吴 月、夏秦明、邱若文。


  • 教育经历Education Background
  • 工作经历Work Experience
  • 研究方向Research Focus
  • 社会兼职Social Affiliations
  • Nonlinear Functional Analysis; Elliptic Partial Differential Equations