王维凡

professor  

Gender : Male

Alma Mater : 南京大学

Education Level : Graduate student graduate

Degree : Doctorate

Status : 退休

School/Department : 数学科学学院

Date of Employment : 2002-05-01


Paper achievements

Acyclic edge coloring of planar graphs without 5-cycles

Hits :

First Author : Qiaojun Shu

Affiliation of Author(s): 数理与信息工程学院

Date of Publication : 2012-01-01

Document Type : 期刊

Journal : Discrete Applied Mathematics

Volume: Vol.160

Issue : No.7-8

Page Number : 1211-1223

ISSN : 0166-218X

Translation or Not : no

Key Words : Acyclic;edge;coloring;Planar;graph;Girth;Maximum;degree

Abstract : An acyclic edge coloring of a graph G is a proper edge coloring such that no bichromatic cycles are produced. The acyclic chromatic index a ′ (G) of G is the smallest integer k such that G has an acyclic edge coloring using k colors. Fiamčik (1978) [9] an

Pre One : A Note on General Neighbor-Distinguishing Total Coloring of Graphs

Next One : On the vertex-arboricity of planar graphs without 7-cycles

Recommend this Article