王维凡

professor  

Gender : Male

Alma Mater : 南京大学

Education Level : Graduate student graduate

Degree : Doctorate

Status : 退休

School/Department : 数学科学学院

Date of Employment : 2002-05-01


Paper achievements

Vertex-pancyclicity of edge-face-total graphs

Hits :

First Author : Wei-Fan Wang

Affiliation of Author(s): 数理与信息工程学院

Date of Publication : 2004-01-01

Document Type : 期刊

Journal : Discrete Applied Mathematics

Volume: Vol.143

Issue : NO.1-3

Page Number : 364-367

ISSN : 0166-218X

Translation or Not : no

Key Words : Edge-face-total;graph;Line;graph;Hamiltonian;cycle;Pancyclicity

Abstract : The edge-face-total graph r(G) of a plane graph G is the graph defined on the vertex set E(G)F(G) so that two vertices in r(G) are joined by an edge if and only if they were adjacent or incident in G. In this paper we prove that (1) the edge-face-total gr

Pre One : ENTIRE CHROMATIC NUMBER AND A-MATCHING OF OUTERPLANE GRAPHS

Next One : 最大度为6的平面图为第一类的一个新充分条件

Recommend this Article