王维凡

professor  

Gender : Male

Alma Mater : 南京大学

Education Level : Graduate student graduate

Degree : Doctorate

Status : 退休

School/Department : 数学科学学院

Date of Employment : 2002-05-01


Paper achievements

Star edge-coloring of graphs with maximum degree four

Hits :

Affiliation of Author(s): 数理与信息工程学院

Date of Publication : 2019-01-01

Document Type : 期刊

Journal : Applied Mathematics and Computation

Volume: Vol.340

Page Number : 268-275

ISSN : 0096-3003

Translation or Not : no

Key Words : Star;edge-coloring;Star;chromatic;index;Maximum;degree;Edge-partition

Abstract : The star chromatic index χ st ′ ( G ) of a graph G is the smallest integer k for which G has a proper k-edge-coloring without bichromatic paths or cycles of length four. In this paper, we prove that (1) if G is a graph with Δ = 4 , then χ st ′ ( G ) ≤ 14

Pre One : Plane Graphs with Maximum Degree 5 Are 11-Linear-Colorable

Next One : Nano properties analysis via fourth multiplicative ABC indicator calculating

Recommend this Article