![]() |
基本信息Personal Information
副研究员(自然科学) 硕士生导师
性别 : 男
毕业院校 : 中国科学院大连化学物理研究所
学历 : 博士研究生毕业
学位 : 博士学位
在职信息 : 在岗
所在单位 : 杭州高等研究院
入职时间 : 2019年11月14日
办公地点 : 杭州高等研究院童趣楼101-2
联系方式 : 0571-82257902
Email :
20220903_基于电镜图片中全金属物种分布的人工智能识别技术发表于Chemical Research in Chinese Universities单原子催化专刊
发布时间 : 2022-09-03 点击量 :
https://link.springer.com/article/10.1007/s40242-022-2218-3
For a practical high-loading single-atom catalyst, it is prone to forming diverse metal species owing to either the synthesis inhomogeneity or the reaction induced aggregation. The diversity of this metal species challenges the discerning about the contributions of specific metal species to the catalytic performance, and thus hampers the rational catalyst design. In this paper, a distinct solution of dispersion analysis based on transmission electron microscopy imaging specialized for metal-supported catalysts has been proposed in the capability of full-metal-species quantification(FMSQ) from single atoms to nanoparticles, including dispersion densities, shape geometry, and crystallographic surface exposure. This solution integrates two image-recognition algorithms including the electron microscopy-based atom recognition statistics (EMARS) for single atoms and U-Net type deep learning network for nanoparticles in different shapes. When applied to the C3N4- and nitrogen-doped carbon-supported catalysts, the FMSQ method successfully identifies the specific activity contributions of Au single atoms and particles in butadiene hydrogenation, which presents remarkable variation with the metal species constitution. This work demonstrates a promising value of our FMSQ strategy for identifying the activity origin of heterogeneous catalysis.