陈浩

基本信息Personal Information

助理研究员(自然科学)

曾获荣誉 : 第一届南京航空航天大学微波光子实验室“MWP歌手是我”歌手大赛第一名

性别 : 男

毕业院校 : 南京航空航天大学

学历 : 博士研究生毕业

学位 : 博士学位

在职信息 : 在岗

所在单位 : 杭州高等研究院

入职时间 : 2022年03月11日

联系方式 : hgy_hao@zjnu.edu.cn

Email :

教师其他联系方式Other Contact Information

通讯/办公地址 :

邮箱 :

扫描关注

个人简介Personal Profile

博士,硕士生导师,助理研究员

主要从事微波光子信号产生、调频连续波信号产生及应用、微波光子传感等方向研究。


实验室地址:浙江师范大学 杭州萧山校区——杭州高等研究院(硕士研究生在杭州校区生活、学习至毕业)


招生专业:

   学硕:光学工程专业

   专硕:电子信息(专业学位)-电子与通信工程方向


希望你能 踏实认真 独立自主 积极主动 

希望你我 相互尊重 共同进步 亦师亦友 


项目:

[1] 国家自然科学基金(青年项目),至2026.12

[2] 2022年浙江师范大学青年博士专项,至2025.12

[3] 浙江师范大学人才引进项目,至2026.06

[4] 2022年南京航空航天大学微波光子技术国家级重点实验室开放基金项目,至2024.06


论文:

34. “Ultra-broadband chaotic laser and microwave ranging based on an optoelectronic oscillator”, Optics Letters, 2025.

33. “Agarose-coated-FBG-based humidity sensing system based on the Vernier effect in an optoelectronic oscillator”, Optics Express, 2025.

32. “Respiratory rate monitoring based on all-fiber strain-induced humidity sensorOptics & Laser Technology, 2025.

31. “High Precision Strain Sensing System Based on Optoelectronic Oscillator for Human Pulse Monitoring”, IEEE Sensors Journal, 2025.

30. “Self-excited Microwave Pulse Generation Based on Self-mode-locking Optoelectronic Oscillator”, Journal of Lightwave Technology, 2025. 

29. “Generation of Microwave Frequency Comb, Chaotic, and Single-frequency Microwave Signal in a Short-cavity-based Optoelectronic Oscillator”Journal of Lightwave Technology, 2024. 

28. “Experimental study on temperature-insensitive curvature sensor based on reflective all-fiber structure”, Infrared Physics & Technology, 137 : 105146, 2024.

27. “Self-mode-locking optoelectronic oscillator with ultrashort time delay”, Advanced Photonics Nexus, 3 (4), 046005-046005, 2024

26. “Fiber Bragg Grating Sensing System for Temperature Measurements Based on Optically Injected DFB-LD with an OEO LoopOptics Express, 32 (11), 19388-19396, 2024. 

25. “High-Resolution and Extended-Range Fiber Bragg Grating Sensing System Based on a Microwave Photonic Filter with Period-breaking Interrogation MethodJournal of Lightwave Technology, 2024. 

24. “Microwave Frequency Division Based on Optically Injected DFB LD with an OEO Loop. IEEE Photonics Technology Letters, vol. 36, no. 3, pp.147-150, 2024. 

23. “Frequency down-converted and sensitivity enhanced fiber optic sensing system based on multi-passband microwave photonic filter by cascaded fiber optic interferometers. Journal of Lightwave Technology, vol. 42, no. 1, pp.477 - 484, 2024.

22. “Mode-locked Optoelectronic Oscillator Based on a Dual-optical-electrical-loop”, IEEE Photonics Technology Letters, 2024.

21. “Temperature insensitive Fiber Bragg Grating Sensing System for Curvature Measurement based on Optoelec tronic Oscillator with the Enhanced Vernier Effect. IEEE Sensors Journal vol. 23, no. 24, pp.30429 - 30436, 2023.

20. “RF Multiplier Based on Harmonic-Locked SMFP-LD and OEO Structure,” IEEE Access, vol. 10, pp. 435-440, 2022.

19. “High-speed Switchable Dual-passband Microwave Photonic Filter with Dual-Beam Injection in an SMFP-LD,” IEEE/OSA Journal of Lightwave Technology,39(24): 7966-7972, 2021.

18. “Reconfigurable Identical and Complementary Chirp Dual-LFM Signal Generation Subjected to an Optical Injection-locking in a DFB Laser,” IEEE/OSA Journal of Lightwave Technology, vol. 38, no. 19, pp. 5500-5580, Oct. 2020.

17. “Sensing interrogation technique for fiber-optic interferometer type of sensors based on a single-passband RF filter”, Optics Express, Vol. 24, No. 3, pp. 2765-2773, 2016. 

16. “Switchable and tunable microwave frequency multiplication based on a dual-passband microwave photonic filter”, Optics Express, Vol. 23, No. 8, pp. 9835-9843, 2015. 

15. “Multi-band LFM Signal with Unidentical Bandwidths Subjected to Optical Injection in a DFB Laser,” IEEE Photonics Technology Letters, 2021. 

14. “Optical Behavior Analysis of Negative Wavelength Detuning in SMFP-LD and Its Effect on Multi-RF Generation”, IEEE Photonics Journal, Vol. 11, No. 1, 5500509, Feb. 2019. 

13. “Fiber-optic temperature sensor interrogation technique based on an optoelectronic oscillator”, Optical Engineering, Vol. 55, No. 3, pp. 031107, 2015. 

12. “Microwave Frequency Generation, Switching, and Controlling Using Single-Mode FP-LDs,” Journal of Lightwave Technology, Vol. 36, No. 19, pp. 4273-4281, Oct. 2018.

11. “Tunable and selectable multi passband microwave photonic filter utilizing reflective and cascaded fiber Mach–Zehnder interferometers”, Journal of Lightwave Technology, Vol. 35, No. 13, pp. 2660-2668, 2017. 

10. Photonic generation of tunable dual-chirp microwave waveforms using a dual-beam optically injected semiconductor laser. Optics Letters, 2020, 45(6). 

9. “Simultaneous measurement of temperature and transversal loading by using a modified fiber Mach-Zehnder interferometer”, IEEE Sensors Journal, Vol. 18, No. 7, pp. 2776-2781, 2018.

8. “Injection with Negative Wavelength Detuning for Multi-Spectrum Frequency Generation and Hopping using SMFP-LD,” IEEE Photonics Journal, Vol. 9, No. 5, 5502811, Oct. 2017. 

7. “Ultra-high resolution microwave photonic radar with post-bandwidth synthesis,” Chinese Optics Letters, vol. 18, no. 7, 072501, Jul. 2020. 

6. “Microwave Frequency Measurement Based on an Optically Injected Semiconductor Laser, ”IEEE Photonics Technology Letters,” vol. 32, no. 23, pp. 1485-1488, Dec. 2020. 

5. “Writing 10 Gb/s Data Bits With Addressing Using External Cavity-Based SMFP-LDs,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 25, No. 6, pp. 501109, Nov. 2019. 

4. “Fiber-optic sensing interrogation system for simultaneous measurement of temperature and transversal loading based on a single-passband RF filter”, IEEE Sensors Journal, Vol. 17, No. 7, pp. 2036-2041, 2017. 

3. “A tunable dual-passband microwave photonic filter based on optical slicing and dual-path fiber delay lines”, Optics Communications, Vol. 346, pp. 10-14, 2015. 

2. “Microwave photonic filter with two independently tunable passbands based on paralleled fiber Mach–Zehnder interferometers and dispersive medium” Applied Physics B, Vol. 120, No. 3, pp. 557-562, 2015. 

1. “Continuous liquid level sensor based on a reflective long period fiber grating interferometer”, Measurement Science and Technology, Vol. 26, No. 3, pp. 037001, 2015. 



  • 教育经历Education Background
  • 工作经历Work Experience
  • 研究方向Research Focus
  • 社会兼职Social Affiliations
  • 微波光子滤波器
  • 微波光子传感技术
  • 光注入半导体激光器
  • 微波光子信号产生及处理