• 其他栏目

    张腾

    • 讲师
    • 性别 : 男
    • 毕业院校 : 西安交通大学
    • 学历 : 博士研究生毕业
    • 学位 : 博士学位
    • 在职信息 : 在岗
    • 所在单位 : 工学院
    • 入职时间 : 2023-11-03
    • 办公地点 : 31幢-308室
    • Email :

    访问量 :

    最后更新时间 : ..

    个人简介

    工学博士,工学院机器人工程系讲师。毕业于西安交通大学机械工程专业,主要研究方向为脑控机器人、人机混合智能、机器人控制等技术。先后主持及参与了国家重点研发计划专项课题1项,国家自然科学基金项目1项,国防科技创新项目2项,省部基金1项,市重点项目1项,横向项目多项。获得陕西高校科学技术成果二等奖1项,国家级科技竞赛奖3项(其中全国冠军1项、全国亚军1项),省部级科技竞赛奖2项。发表SCI、EI检索论文20余篇,授权国家发明专利近10项,登记软件著作权3项。受邀担任 IEEE WRC SARA、Frontiers in Psychology 等多个国际权威学术期刊审稿人。

     

    学术兼职

    n  中国指挥与控制学会无人系统专委会  委员

    n  IEEE  Member

    n  多个权威期刊特约审稿人

     

    代表专著

    医疗机器人技术丛书《无创脑控技术及应用》专著(筹),副主编,推荐编写人:丁汉院士

    获湖北省公益学术著作基金项目资助

     

    代表成果

    In preparation

    [1]     T Zhang, Z Yan, D Wang*, A Novel Multimodal Emotion Recognition Method Inspired by Biological Homology [J]. IEEE Transactions on Affective Computing. 2024

    [2]     Z Yan, T Zhang*, D Wang*, A Novel Theory, Method and Device for Detecting Microscopic Surface Defects in Industrial Products [J]. IEEE Transactions on Instrumentation and Measurement. 2024

    [3]     Y Chen, T Zhang*, D Wang*, TQL:A Robust Q-Learning based Decision Transformer [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2024

     

    Submitted

    [4]     T Zhang, X Zhang*, et al. Human-Computer Co-Adaptive Approach Considering the Diversity of Mental States and Neuroplasticity of the Brain [J]. Expert Systems with Applications. 2024

    [5]     Y Chen, T Zhang*, D Wang*, Light-weight ensemble Q-network joint implicit constraints for offline reinforcement learning [J] IEEE Transactions on Neural Networks and Learning Systems. 2024

    [6]     Y Chen, T Zhang*, Tao Li, D Wang*, EMDSAC-ft: Bridging the Gap in Offline-to-Online Reinforcement Learning through Value Distribution Learning [J] IEEE Transactions on Neural Networks and Learning Systems. 2024

    [7]     B Li; C Deng; T Zhang; S Hu. Tool wear prediction in milling CFRP with new fiber orientation based on deep feature transfer learning network [J]. Advances in Manufacturing. 2024

     

    Published

    2024

    [8]     Zhang X, Zhang T*, Jiang Y, et al. A Novel Brain-Controlled Prosthetic Hand Method Integrating AR-SSVEP Augmentation, Asynchronous Control, and Machine Vision Assistance [J]. Heliyon 2024, 10(5): e26521. (SCI: 001200298700001, IF: 4.0)

    [9]     Z Yan, T Zhang*, D Wang*, MSD-YOLO: A Novel Method for Detecting Microscopic Surface Defects in Metal spray-painted thermal mugs [C]. IEEE WRC SARA. 2024

    2022

    [10]     Zhang T, Zhang X*, Lu Z, et al. Feasibility study of personalized speed adaptation method based on mental state for teleoperated robots[J]. Frontiers in Neuroscience, 2022,16:976437. (SCI: 000883612500001, Top, IF:5.152)

    [11]  Zhang T, Zhang X*, Zhu W, et al. Study on the diversity of mental states and neuroplasticity of the brain during human-machine interaction[J]. Frontiers in Neuroscience, 2022,16:921058. (SCI: 000899355900001, Top, IF:5.152)

    [12]  Zhang X, Lu Z*, Li H, Zhang T, et al. An Asynchronous Artifact-enhanced EEG-based Control Paradigm Assisted by Slight Facial-expression[J]. Frontiers in Neuroscience, 2022.9.6. (SCI: 000847864800001, Top, IF:5.152)

    [13]  Zhang X*, Lu Z*, C Fan*, Y Wang, T Zhang, H Li and Q Tao. Compound Motion Decoding Based on sEMG Consisting of Gestures, Wrist Angles, and Strength[J]. Frontiers in Neurorobotics, 2022.11.10. (SCI: 000889183100001,IF: 3.493)

    2021

    [14]  张腾, 张小栋, 张英杰, 等. 引入深度强化学习思想的脑-机协作精密操控方法[J]. 西安交通大学学报, 2021,55(02):1-9. (EI: 20210910014525, 封面文章)

    [15]  Zhang X, Lu Z*, Zhang T, et al. Realizing the Application of EEG Modeling in BCI Classification: Based on a Conditional GAN Converter[J]. Frontiers in Neuroscience, 2021,15:727394. (SCI: 000725586600001, Top, IF:4.677)

    2020

    [16]  Jiang Z, Zhang X*, Zhang T, et al. Analysis of Nerve Excitation for TENS under Point Current Source[C]. IEEE International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, Xi’an, China, 2020.

    [17]  Lu Z, Zhang X*, Li H, Zhang T, et al. A Semi-Asynchronous Real-Time Facial-Expression Assisted Brain Control Method: An Extension[C]. IEEE International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, Xi’an, China, 2020.

    2019

    [18]  Zhang T, Zhang X*, Zhang Y, et al. Effects of user fatigue mental state on the facial-expression paradigm of BCI: 2019 WRC Symposium on Advanced Robotics and Automation (WRC SARA), 2019[C]. IEEE, 21-22 Aug. 2019.

     

    代表专利

    授权国家发明专利:

    [1]     一种脑-机协作数字孪生强化学习控制方法及系统: 中国发明专利, ZL202010998177.0[P].

    [2]     排爆机器人遥操作者典型精神状态的诱发范式设计及脑电辨识方法: 中国发明专利, ZL202011024291.X[P].

    [3]     肢体外骨骼辅助康复脑-肌电融合感知的自主学习与进化方法: 中国发明专利, ZL202010954596.4[P].

    [4]     一种多抓取模型下腕关节力矩的肌电连续预测方法及系统: 中国发明专利, ZL201911077156.9[P].

    [5]     假手指压力与关节角度反馈的电刺激驱动方法与系统: 中国发明专利, ZL201911167807.3[P].

    [6]     由弱肌电伪微表情脑电信号驱动的异步实时脑控方法: 中国发明专利, ZL201910087028.6[P].

    [7]     一种现实增强的自适应动态多场景诱发脑控方法: 中国发明专利, CN112114662A [P].

    申请国家发明专利:

    [1]     一种脑状态分期波动的感知方法及装置:中国发明专利.

    [2]     一种使人脑和机器脑互适应的调控方法及系统:中国发明专利.

    [3]     一种脑机混合智能增强的人机协作方法及系统:中国发明专利.

    [4]     一种仿生眼机制的工业品表面缺陷检测方法及装置:中国发明专利.

    [5]     一种面向非结构化缺陷环境检测的自调节打光和捕捉图像装置:中国发明专利.

     

    代表竞赛获奖(省部级、国家级)

    [1]     “超能勇士-2019”单兵外骨骼系统挑战赛协同控制项目, 中**********部, 2019.10, 亚军. (1/4)

    [2]     外骨骼系统西安挑战赛, 中国指挥与控制学会, 2019.9, 亚军. (1/4)

    [3]     “HRG 博实杯”第一届中国研究生机器人创新设计大赛, 教育部, 2019.8, 三等奖. (4/5)


    所授课程

    n  机器人系统结构设计

    n  智能机器人技术及系统应用

    n  智能机器人技术综合实训