杨敏波

基本信息Personal Information

教授

性别 : 男

毕业院校 : 中科院研究生院

学历 : 博士研究生毕业

学位 : 博士学位

在职信息 : 在岗

所在单位 : 初阳学院

入职时间 : 2005年07月01日

办公地点 : 16-802

联系方式 : mbyang@zjnu.cn

Email :

教师其他联系方式Other Contact Information

邮箱 :

扫描关注

个人简介Personal Profile

1. 基本信息

    杨敏波,浙江师范大学数学系教授,博士生导师,初阳学院副院长。

主要研究兴趣:非线性分析与椭圆型偏微分方程,特别是非局域的椭圆与抛物方程。主要关注与研究非局域椭圆型偏微分方程(组)解的存在性、渐近行为与集中性质;非局域临界热方程与Hartree方程解的稳定性与爆破分析;非局域Lane-Emden方程及其相关问题解的分类;具有强不定变分结构的微分方程解的存在性与集中性;拟线性薛定谔方程的变分与分歧方法。

2. 科研项目

10.《若干数学物理中的非线性微分方程的解及其性质研究》,LZ22A010001,浙江省自然科学基金重点项目,202201--202412,主持

9.《浙江师范大学与巴西利亚大学非线性分析与偏微分方程研究领域的科研合作和人才培养》,国家留学基金管理委员会,202010--202210,主持

8.《非局域作用下非线性薛定谔方程解的分类》,国家自然科学基金委与英国皇家学会合作交流项目,202007--202206,主持

7.《具有非局域或强不定特性的非线性问题的变分和非变分方法》,国家自然科学基金面上项目,202001--202312,主持

6.《非局部微分方程的变分方法研究》,国家自然科学基金面上项目,201601--201912,主持

5.《非线性Choquard方程与Dirac方程的奇异扰动问题》,省自然科学基金项目,201501--201712,主持

4.《薛定鄂方程及其相关问题的变分方法研究》,国家自然科学基金青年项目,201201--201412,主持

3.《利用变分方法研究一类非局部薛定谔方程解的存在性》Existencia de solucao para uma classe de Equacoes de Schrodinger  nao locais via metodos variacionais巴西国家科学技术发展委员会CNPq项目,201308--201408,主持

2.《一类非线性椭圆方程正解与变号解的存在性与非存在性》Sobre Existenciae Na-Existencia de Solucos Positivas e Nodais para problemas elipticos na lineares, 巴西巴西利亚联邦区FAP-DF项目,2018,参与

1.《无穷维Hamiltion系统同宿轨的存在性与多解性问题研究》,省自然科学基金项目,200801--201012,主持

3. 重要会议报告

6. On critical Hartree equations: qualitative analysis and its applications, 分析组邀请报告(线上),XIV Summer Workshop in Mathematics Mat/ UnB, University of Brasília, Brasília- DF, Brazil, Janurary 18, 2022.

5. High energy positive solutions for a coupled Hartree system with Hardy-Littlewood-Sobolev critical exponents, 分组报告,第二十一届全国非线性泛函分析会议, 云南师范大学,昆明, 7月24日, 2021

4. On the Choquard equation with Hardy-Littlewood-Sobolev upper critical exponent, 大会邀请报告,ICM Satellite Conference, International Workshop on Nonlinear Dynamical Systems and Functional Analysis, University of Brasília, Brasília- DF, Brazil,  August 15, 2018

3. Some recent results of Choquard equation, 第十九届全国非线性泛函分析会议, 分组报告, 华中师范大学,武汉,5月22日,2016

2. Multi-bump solutions for Choquard equation with deepening potential well, 分析组邀请报告, 中国数学会第十二次全国代表大会暨80周年纪念学术会议, 首都师范大学, 北京, 11月22日, 2015.

1. Existence and concentration behavior of solutions for a quasilinear Choquard equation, 分组邀请报告, ICMC Summer Meeting on Differential Equations 2014 Chapter, Universidade de São Paulo, 3, FEB, 2014.

4. 代表论文

32. Liejun Shen, V. Radulescu, Minbo Yang, Planar Schr\"odinger-Choquard equations with potentials vanishing at infinity: the critical case, J. Differential Equations, accepted

31. Liejun Shen, Marco Squassina, Minbo Yang, Critical gauged Schrodinger equations in R^2 with vanishing potentials, Discrete Contin. Dyn. Syst. A, doi:10.3934/dcds.2022059

30. Michael Melgaard, Minbo Yang*, Xianmei Zhou, Regularity, symmetry and asymptotic behaviour of solutions for some Stein-Weiss type integral systems, Pacific Journal of Mathematics, accepted

29. Minbo Yang, V. Radulescu, Xianmei Zhou, Critical Stein-Weiss elliptic systems: symmetry, regularity and asymptotic properties of solutions, Calc. Var. Partial Differential Equations, (2022) 61:109

28. L. Du, F. Gao, Minbo Yang*, On elliptic equations with Stein-Weiss type convolution parts, Mathematische Zeitschrift, doi:10.1007/s00209-022-02973-1

27. C.O. Alves, Minbo Yang, Existence and multiplicity of solutions for a class of indefinite variational problemsCommunications in Analysis and Geometry, accepted.

26. Xiang Li, Minbo Yang*, Xianmei Zhou, Qualitative properties and classification of solutions for elliptic equations with Stein-Weiss type convolution part, Sci. China Math., doi:10.1007/s11425-021-1918-1

25. Fashun Gao, V. Radulescu, Minbo Yang, Yu Zheng, Standing waves for pseudo-relativistic Hartree equation with general nonlinearities, J. Differential Equations, 295 (2021), 70--112.

24. Fashun Gao, Haidong Liu, Vitaly Moroz, Minbo Yang, High energy positive solutions for a coupled Hartree system with Hardy-Littlewood-Sobolev critical exponents, J. Differential Equations, 287(2021) ,329--375.

23. Minbo Yang, Fukun Zhao and Shunneng Zhao, Classification of solutions to Hartree equation with double Hardy-Littlewood-Sobolev critical parts, Discrete Contin. Dyn. Syst. A, 2021, 41(11), 5209--5241.

22. Minbo Yang*, Xianmei Zhou, On a coupled Schrodinger system with Stein-Weiss type convolution part, The Journal of Geometric Analysis, 31,(2021), 10263—10303.

21. Carlos. Santos, Minbo Yang*, Jiazheng Zhou, Global multiplicity of solutions for a modified elliptic problem with singular terms, Nonlinearity, 34 (2021), 7842--7871.

20. Y. Ding, F. Gao, Minbo Yang*, Semiclassical states for Choquard type equations with critical growth: critical frequency case, Nonlinearity,33 (2020), 6695--6728.

19. F. Gao, Edcarlos. Silva, Minbo Yang*, J. Zhou, Existence of solutions for critical Choquard equations via the concentration compactness method, Proc. Roy. Soc. Edinb. A , 15022020, 921--954.

18. Lele Du, Minbo Yang*, Uniqueness and nondegeneracy of solutions for a critical nonlocal equation, Discrete Contin. Dyn. Syst. A., 2019,39(10): 5847--5866.

17. Lushun Wang, Minbo Yang, Yu Zheng, Infinitely many segregated solutions for coupled nonlinear Schrodinger systems, Discrete Contin. Dyn. Syst. A. 2019,39(10):6069--6102.

16. Minbo Yang*, Carlos. A. Santos, Jiazheng Zhou, Least action nodal solutions for a quasilinear defocusing Schrodinger equation with supercritical nonlinearity, Commun.Contemp. Math., 2019,21 (5),1850026.

15. Zifei Shen, Fashun Gao, Minbo Yang*, On critical Choquard equation with potential well, Discrete Contin. Dyn. Syst. A., 2018,38(7):3669--3695.

14. Fashun Gao, Minbo Yang*, A strongly indefinite Choquard equation with critical exponent due to the Hardy-Littlewood-Sobolev inequality, Commun.Contemp. Math., 20(2018), 4, 1750037, 22 pp.

13. Fashun Gao, Minbo Yang*, The Brezis-Nirenberg type critical problem for nonlinear Choquard equation, Sci. China Math., 61(2018), no. 7,1219--1242.

12. Minbo Yang*, Semiclassical ground state solutions for a Choquard type equation in R^2 with critical exponential growth, ESAIM: Control, Optimisation and Calculus of Variations, 24 (2018), 177--209.

11. C. O. Alves, Fashun Gao, M. SquassinaMinbo Yang*, Singularly perturbed critical Choquard equations, J. Differential Equations, 63(2017),no. 7, 3943--3988.

10. C.O. Alves, A. Nobrega, Minbo Yang*, Multi-bump solutions for Choquard equation with deepening potential well, Calc. Var. Partial Differential Equations, 55 (2016), 48, 28 pp

9. C.O. Alves, Minbo Yang, Existence of positive multi-bump solutions for a Schrodinger-Poisson system in R^3, Discrete Contin. Dyn. Syst. A. 36 (2016), 5881--5910.

8. Minbo Yang*, Concentration of Positive Ground State Solutions for Schrödinger–Maxwell Systems with Critical Growth. Adv. Nonlinear Stud.,16 (2016), 389--408.

7. C. O. Alves, Minbo Yang, Investigating the multiplicity and concentration behaviour of solutions for a quasi-linear Choquard equation via the penalization method, Proc. Roy. Soc. Edinb., A,146(2016), 23--58.

6. C. O. Alves, D. Cassani, C. Tarsi and Minbo Yang*, Existence and concentration of ground state solutions for a critical nonlocal Schrodinger equation in R2, J. Differential Equations,, 261 (2016),1933--1972.

5. C. O. Alves, Minbo Yang*, Existence of semiclassical ground state solutions for a generalized Choquard equation. J. Differential Equations, 257(2014), no. 11, 4133--4164.

4. Minbo Yang*, Yanheng Ding,  Existence of semiclassical states for a quasilinear Schrödinger equation with critical exponent in RN. Ann. Mat. Pura Appl. (4) 192 (2013), no. 5, 783--804.

3. Minbo Yang*, Fukun Zhao, Yanheng Ding, On the existence of solutions for Schrödinger-Maxwell systems in R3. Rocky Mountain J. Math., 42(2012), no. 5, 1655--1674.

2. Wenxiong Chen, Minbo Yang, Yanheng Ding, Homoclinic orbits of first order discrete Hamiltonian systems with super linear terms. Sci. China Math.,54 (2011), no. 12, 2583--2596.

1. Minbo Yang*, Ground state solutions for a periodic Schrödinger equation with superlinear nonlinearities, Nonlinear Analysis TMA . 72 (2010), no. 5, 2620--2627.

5. 人才培养

 正在指导博士5人,硕士7人,协助指导博士3人,硕士6人。已指导毕业10余位硕士与博士,其中多名学生考取北师大、华师大、浙师大等国内高校博士或获得全额奖学金到意大利攻读博士学位,两人分别获评省优秀博士学位论文与省优秀硕士学位论文,部分研究生的学位论文发表于国际著名数学刊物Mathematische Zeitschrift、Calc. Var. Partial Differential Equations、J. Differential Equations、Commun.Contemp. Math.、Discrete Contin. Dyn. Syst. A、Pacific Journal of Mathematics、The Journal of Geometric Analysis、Proc. Roy. Soc. Edinb. A、Sci.China Math..部分优秀学生:

高发顺,浙江师范大学博士毕业,与沈自飞教授共同指导,浙江省优秀博士学位论文获得者,已获国家青年基金资助。攻读博士学位期间,在Mathematische Zeitschrift、J. Differential Equations、Commun.Contemp. Math.、Discrete Contin. Dyn. Syst. A、NonlinearityProc. Roy. Soc. Edinb. A、Sci.China Math.等杂志录用发表论文。

郑  雨,浙江师范大学博士毕业,与沈自飞教授共同指导,已获国家青年基金资助。攻读博士学位期间在J. Differential Equations、Discrete Contin. Dyn. Syst. A等杂志录用发表论文。

李硕硕,浙江师范大学博士毕业,与沈自飞教授共同指导。攻读博士学位期间在JMAA、TMNA等杂志发表论文。

汤厚志,与沈自飞教授共同指导,考取华东师范大学博士。

杜乐乐,与钱李新教授共同指导,浙江省优秀硕士学位论文获得者,意大利因苏布里亚大学攻读博士,硕士学位论文发表在Mathematische Zeitschrift、Discrete Contin. Dyn. Syst. A等杂志。

王  坤,考取北京师范大学博士。

周娴媚,考取华东师范大学博士,硕士学位论文发表在Calc. Var. Partial Differential EquationsPacific Journal of Mathematics、The Journal of Geometric Analysis、Sci.China Math. 等杂志。

正在指导的博士:赵顺能、陈思雨、张水金、周凡、张剑

正在协助指导的博士:周粉、叶薇薇、李祥

正在指导的硕士:叶方琪、陈佳妮、张鑫沄、王嘉盛、陆琪恺、顾啸峰、张智慧

 

 




 






  • 教育经历Education Background
  • 工作经历Work Experience
  • 研究方向Research Focus
  • 社会兼职Social Affiliations
  • Nonlinear Functional Analysis; Elliptic Partial Differential Equations